Exercice 1: (5,5 points)

7

 J_n)_{neIN} est une suite arithmétique tels que $U_5 = -14$ et $U_{13} = -38$

- 1) a) Déterminer la raison r et le premier terme U0 de cette suite
 - b) Exprimer U_n en fonction de n pour tout $n \in IN$.
 - c) On pose $S_n = U_0 + U_1 + \dots U_n$, déterminer n pour que $S_n = -76$
- 2) Soit la suite (V_n) défini dans IN par $V_n = U_{2n} 2 n$
 - a) Exprimer V_n en fonction de n
 - b) Montrer que (V_n) est une suite arithmétique dont on précisera la raison.
 - c) Calculer la somme $A = V_0 + V_1 + \dots V_{20}$
- 3) On pose $B = 2 + 4 + 6 + \dots + 40$ et $C = U_0 + U_2 + U_4 + \dots + U_{40}$ Calculer B, en déduire la valeur de C.

Exercice 2: (2,5points)

Soit le polynôme P défini dans IR par $P(x) = x^3 + 5x^2 - 17x - 21$

- 1) Soit n un entier supérieure ou égal à 3. Montrer que si P(n) = 0 alors n est un diviseur de 21
- 2) Résoudre alors dans IR l'équation P(x) = 0

crcice 3: (7points)

Soit l'application $f: [0, \pi] \longrightarrow IR: x \longmapsto f(x) = -\cos^2 x + \cos x \sin x - 1$

- 1) Calculer f($\frac{\pi}{3}$) et f($\frac{3\pi}{4}$)
- 2) Soit α un élément de $[0, \pi]$ tel que tg $\alpha = -2\sqrt{6}$, calculer $\cos \alpha$ en déduire $f(\alpha)$
- 3) Résoudre dans $[0, \pi]$, l'équation f(x) = -1
- 4) Vérifier que $\cos \frac{5\pi}{8} = -\cos \frac{3\pi}{8}$ et $\sin \frac{5\pi}{8} = \sin \frac{3\pi}{8}$, calculer alors $f(\frac{\pi}{8}) + f(\frac{5\pi}{8})$
- 5) a) Montrer que pour tout x élément de $[0, \pi] \setminus \{\frac{\pi}{2}\}$, $f(x) = \frac{-tg^2x + tgx 2}{1 + tg^2x}$
 - b)) Montrer que pour tout x un élément de $[0, \pi]$, f(x) < 0

Exercice 4: (5 points)

Soient ACDE un carré direct de côté a et B le point tel que ABC est un triangle équilatéral (le point B est pris ω l'intérieur du carré). On désigne par H le milieu du segment [ED]

- 1) Montrer que BH = $\frac{a}{2}(2-\sqrt{3})$
- 2) Montrer que BE = a $\sqrt{2-\sqrt{3}}$
- 3) Montrer que $\overrightarrow{AEB} = \frac{5\pi}{12}$ puis calculer sin $\frac{5\pi}{12}$, en déduire $\cos \frac{\pi}{12}$.
- 4) Soit I le symétrique de B par rapport à (AC), on désigne par r la rotation directe de centre I et d'angle $\frac{\pi}{3}$
 - a) Montrer que r(C) = A
 - b) Construire le point J = r(B)
 - c) Montrer que A est le milieu du segment [CJ]